Tom's Kopfbahnhof

Search

Search IconIcon to open search

Relevent and irrelevant operators

Last updated Dec 29, 2024

In a general EFT $$\mathcal{L} = \sum_n c_n \frac{\mathcal{O}_n}{\Lambda^{d_n - 4}}$$ with operators $\mathcal{O}_n$ with dimension $d_n$ at energies below $\Lambda$ we define

irrelevant operators: mass dimension $d_n > 4$ relevant operators: mass dimension $d_n < 4$ marginal operators: mass dimension $d_n = 4$

  1. $d_n = 0$: unit operator $1$
  2. $d_n = 2$: boson mass term $\phi^dagger \phi$
  3. $d_n = 3$: fermion mass term $\overline{\psi}\psi$, cubic scalar interaction $\phi^3$

Example: Toy theory with scalar fields: $$\mathcal{L} = \frac{1}{2}(\partial \phi)^2 + \frac{1}{2} (\partial \varphi)^2 - \frac{1}{2}m^2\varphi^2 - \frac{1}{2}M^2\phi^2 - \frac{\lambda}{2}\varphi^2\phi$$

Amplitude for $\varphi\varphi \to \varphi\varphi$ $$\mathcal{A}(\varphi\varphi \to \varphi\varphi)\propto \frac{\labmda^2}{q^2 - M^2}\frac{1}{E}$$

$\Rightarrow$ At low energies the cross section increases because $\varphi^2\phi$ is relevent operator