Tom's Kopfbahnhof

Search

Search IconIcon to open search

Quantum entropies

Last updated Dec 29, 2024

# Von Neumann entropy

Definition: Von Neumann entropy

The Von Neumann entropy of a density matrix $\rho$ is given by $$S(\rho) = -\text{tr}{\rho\ln\rho}$$

With the decomposition $\rho = \sum_i p_i\ket{\phi_i}\bra{\phi_i}$ the Von Neumann entropy is equal to the Shannon information entropy of the distribution $p_i$.

Therefore $S(\rho)$ corresponds to the uncertainty of the realization of a particular state $\ket{\phi_i}$.

Remarks:

# Relativ entropy

Definition: Relativ entropy

For two density matrices $\rho$ and $\sigma$ the relativ entropy is defined as $$S(\rho||\sigma) = \text{tr}{\rho \ln \rho } - \text{tr}{\rho \ln \sigma }$$

Remarks:

# Linear entropy

Definition: Linear entropy

The linear entropy of a density matrix $\rho$ is given by $$S_l(\rho) = \text{tr}{\rho - \rho^2}$$

Remarks: