Tom's Kopfbahnhof

Search

Search IconIcon to open search

Loops in EFTs

Last updated Dec 29, 2024

Irrelevant operators have coupling constants with negative mass dimension. Therefore they produce non-renormalizable interactions

  1. Mass / momentum dependet scheme

  2. Mass / momentum independet scheme

Example: Example EFT lagrangian: $$\mathcal{L} = \overline{\psi}(i\partial \negthinspace\negthinspace\negthickspace/ - m)\psi - \frac{a}{\Lambda^2}(\overline{\psi}\psi)^2 - \frac{b}{\Lambda^4}(\overline{\psi}\partial^2\psi)(\overline{\psi}\psi) + …$$

  1. Mass dependent:

$(\overline{\psi}\psi)^2$-Term: Dim 6: UV cutoff is $\Lambda$ $$\delta m \propto 2ia\frac{m}{\Lambda^2} \int^\Lambda \frac{\text{d}^4k}{(2\pi)^4} \frac{1}{k^2-m^2 + i\epsilon} \propto m$$

$(\overline{\psi}\partial^2\psi)(\overline{\psi}\psi)$-Term: Dim 8: $$\delta m \propto 2ib\frac{m}{\Lambda^4} \int^\Lambda \frac{\text{d}^4k}{(2\pi)^4} \frac{k^2}{k^2-m^2 + i\epsilon} \propto m$$

$\Rightarrow$ Mass corrections of order $m$

  1. Mass independent:

$(\overline{\psi}\psi)^2$-Term: Dim 6: $$\delta m \propto 2 i a \frac{m}{\Lambda^2}\int \frac{\text{d}^{4-2\epsilon}k}{(2\pi)^{4-2\epsilon}}\frac{1}{k^2-m^2 + i\epsilon} = 2\frac{a}{\Lambda^2}m\int \frac{\text{d}^{4-2\epsilon}k}{(2\pi)^{4-2\epsilon}}\frac{1}{k^2+m^2}$$

The integral calculates to

$$\delta m \propto 2 \frac{a}{\Lambda^2}m \frac{m^2}{16 \pi^2} \mu^{-2\epsilon} (-\frac{1}{\epsilon} - 1 + \gamma_E -\log 4\pi + \log\frac{m^2}{\mu^2})$$

Definition: Minimal Subtraction (MS) renormalization scheme In the MS scheme, the $\frac{1}{\epsilon}$ term is absorbed / subtracted into the redefinition.

Definition: Modified MS ($\overline{\text{MS}}$) renormalization scheme In the $\overline{\text{MS}}$ scheme, the $\frac{1}{\epsilon} - \gamma_E + \log 4\pi$ term is absorbed / subtracted into the redefinition.

Therefore in $\overline{\text{MS}}$ we have the mass correction for the dim 6 operator

$$\delta m \propto - m \frac{a}{8\pi^2}\frac{m^2}{\Lambda^2}(1 - \log\frac{m^2}{\mu^2})$$

Example: $\gamma \bar{e} e$ at one loop

Electron loop:

  1. V-A EFT operator: $-\frac{G_F}{\sqrt{2}} \bar{e}\gamma_\mu (1-\gamma_5)e\bar{e}\gamma^\mu(1-\gamma_5)e$ Loop contribution with $G_F \propto \frac{1}{M^2_W}$: $\mathcal{M}\propto\frac{1}{M^2_W}\int \frac{d^4k}{(2\pi^4)}\frac{1}{k^2-m^2_e+i\epsilon}$

  2. V-A EFT operator with derivatives: $-\frac{G_F}{\sqrt{2}} \bar{e}\gamma_\mu (1-\gamma_5)\frac{\partial^2}{M^2_W}e\bar{e}\gamma^\mu(1-\gamma_5)e$ Loop contribution: $\mathcal{M}\propto\frac{1}{M^4_W}\int\frac{d^4k}{(2\pi^4)}\frac{k^2}{k^2-m^2_e+i\epsilon}$

Mass-dependent renormalization scheme: cut integral at $\Lambda \approx M_W$

  1. $\propto \frac{\Lambda^2}{M^2_W} \approx 1$
  2. $\propto \frac{\Lambda^4}{M^4_W} \approx 1$

Mass-dependent renormalization scheme ($\overline{\text{MS}}$):

  1. $\propto \frac{m^2_e}{M^2_W}(1 + … + \log\frac{\mu}{m_e}) \ll 1$
  2. $\propto \frac{m^4_e}{M^4_W}(1 + … + \log\frac{\mu}{m_e}) \ll 1$